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Abstract. In this paper we prove a recent conjecture about the convergence of the WKB
series for the angular momentum operator. We demonstrate that the WKB algorithm for the
angular momentum gives the exact quantization formula if all orders are summed. Finally, we
discuss the supersymmetric semiclassical quantum mechanics (SWKB), which gives the correct
quantization of the angular momentum at the leading order.

1. Introduction

The semiclassical methods used to solve the Schrödinger problem are of extreme importance
in understanding the global behaviour of eigenfunctions and energy spectra, since they
allow us to obtain analytic expressions. The leading semiclassical approximation (torus
quantization) is just the first term of a certain ¯h-expansion, which is called WKB (Maslov
and Fedoriuk 1981).

Recently it was observed (Prosen and Robnik 1993, Graffiet al 1994, Robnik and
Salasnich 1997a—in the following this work will be referred to as I) that the torus
quantization generally fails to predict the individual energy levels (and the eigenstates)
within a vanishing fraction of the mean-energy level spacing. This conclusion is believed
to be correct for general systems, including the chaotic ones. Therefore, a systematic study
of the accuracy of semiclassical approximation is very important, especially in the context
of quantum chaos (Casati and Chirikov 1995, Gutzwiller 1990). Since this is a difficult task,
it has been attempted for simple systems, where in a few cases even exact solutions may
be found (Dunham 1932, Benderet al 1977, Voros 1983, Robnik and Salasnich 1997a).

Robnik and Salasnich (1997b) (this work will be referred to as II) dealt with the WKB
expansion for the Kepler problem: it was proved that an exact result is obtained once all
terms are summed. In particular, the torus quantization (the leading WKB term) of the
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full problem is exact, even if the individual torus quantization of the angular momentum
and of the radial Kepler problem separately are not, because the quantum corrections (i.e.
terms higher than the torus quantization) compensate mutually term by term. In the paper
II Robnik and Salasnich conjectured about the higher terms of the WKB expansion. This
conjecture is perfectly reasonable but not rigorously proved. In this work our aim is to
prove that the same result of II can be reached rigorously by means of a slightly modified
procedure.

In the framework of the supersymmetric semiclassical quantization (SWKB), Comtet
et al (1985) obtained at the leading order the exact quantization of the radial part of the
Kepler problem by using the correct valueL2 = h̄2l(l+1). In the last section we complete
the result of Comtetet al (1985). In fact, we also show that the exact quantization of the
angular momentum is obtained at the first order of the SWKB expansion.

2. Eigenvalue problem for the angular momentum

The eigenvalue equation of the angular momentum operator (Landau and Lifshitz 1977) is

L̂2Y (θ, φ) = λ2h̄2Y (θ, φ) (1)

with

L̂2 = P̂ 2
θ +

P̂ 2
φ

sin2(θ)
= −h̄2

(
∂2

∂θ2
+ cot(θ)

∂

∂θ

)
− h̄2 1

sin2(θ)

∂2

∂φ2
. (2)

After the substitution

Y (θ, φ) = T (θ)eimφ (3)

we obtain

T ′′(θ)+ cot(θ)T ′(θ)+
(
λ2− m2

sin2(θ)

)
T (θ) = 0. (4)

We shall consider the azimuthal quantum numberm as fixed. As is well known, equation (4)
is exactly solvable. Its eigenvalues and eigenfunctions can be found in any text on quantum
mechanics (see, e.g. Landau and Lifshitz 1977): the former areλ2 = l(l + 1), l > m; the
latter are the associated Legendre polynomials.

The WKB expansion for equation (4) has been studied in II; it was shown that higher-
order terms quickly increase in complexity. The method of solution is to find an analytical
recursive expression for all the higher-order terms, to sum the entire infinite series, and
show that it is convergent to the exact result. Instead of the original functionT we shall
use the associated functionF :

T (θ) = F(θ)√
sin(θ)

(5)

from which we obtain

F ′′(θ)+
[(
λ2+ 1

4

)
+ 1

sin2(θ)

(
1

4
−m2

)]
F(θ) = 0. (6)

This equation has the standard form of the one-dimensional Schrödinger equation with
h̄ = 2M ≡ 1. Its eigenvalues are(λ2 + 1

4). We make the substitution of variable:
x = θ + π/2, and the positionsU = m2− 1

4, E = λ2+ 1
4. Then equation (6) becomes

−F ′′(x)+ U

cos2(x)
F (x) = EF(x). (7)
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This is the main result of our paper, because the problem of the WKB quantization of
equation (7) has already been dealt with in I. As we shall show, from I we can prove that:
(i) equation (7) can be solved exactly; (ii) a semiclassical expansion of (7) may be carried
on to all orders (i.e. all terms may be exactly and analytically computed and summed); (iii)
the exact and the semiclassical eigenvalues are the same.

3. WKB series for the angular momentum

We observe that in equation (7) ¯h does not appear, therefore an expansion in powers of this
parameter is not possible. To override this difficulty a small parameterε is introduced:

−ε2F ′′(x)+ U

cos2(x)
F (x) = EF(x). (8)

This parameterε, which will be set to 1 at the end of the calculation, has formally the
same role of ¯h as ordering parameter. It has already been used in II to deal with the WKB
expansion of (4). The formal WKB expansion forF reads:

F(x) = exp

(
i

ε

∞∑
n=0

σn(x)ε
n

)
(9)

and we obtain a recursion relation for the phases:

(σ ′0(x))
2 = E − U

cos2(x)
(10)

n∑
k=0

σ ′k(x)σ
′
n−k(x)+ σ ′′n−1(x) = 0 n > 0. (11)

The quantization condition is obtained by requiring that the wavefunction be single valued:∮
dσ =

∞∑
k=0

∮
dσk = 2πnθ (12)

wherenθ is an integer number. All odd terms higher than the first vanish when integrated
along the closed contour since they are exact differentials (Benderet al 1977)∮

dσ2k+1 = 0 k > 0. (13)

It may be proved by induction (see I) that the solution of (10), (11) is

σ ′n(x) = (σ ′0)1−3nPn(cos(x)) sinf (n)(x) (14)

with f (n) = 0 for n even,f (n) = 1 for n odd,

Pn(cos(x)) =
g(n)∑
l=0

Cn,l cos2l−3n(x) (15)

with g(n) = (3n − 2)/2 for n even,g(n) = (3n − 3)/2 for n odd,C0,0 = 1, C1,0 = U/2,

C2k,0 = (−1)k(U/2)2k
( 1

2
k

)
andC2k+1,0 = 0, k > 0. It is not necessary to know the value

of the other coefficients since all the terms proportional toCn,l , l > 0 disappear after
integration. The integral (12) becomes (see I for more details)∮

dσ =
∮

dσ0+
∮

dσ1+
∞∑
k>0

∮
dσ2k (16)
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= 2π(
√
E −
√
U)− π −

∞∑
k>0

1

2

( 1
2

k

)
2π(√

4U
)2k−1 (17)

= 2π

(√
E − 1

2
−
∞∑
k=0

1

2

( 1
2

k

)
2π(√

4U
)2k−1

)
= 2πnθ (18)

but
∑∞

k=0

( 1
2
k

)
x1−2k = √1+ x2 for |x| > 1, therefore equation (18) reads

√
E − 1

2

√
1+ 4U2− 1

2 =
√
λ2+ 1

4 − 1
2

√
4m2− 1

2 = nθ . (19)

Now, becauseE = λ2+ 1
4 andU = m2− 1

4, we obtain

λ2 = (m+ nθ + 1
2)

2− 1
4 = (m+ nθ )(m+ nθ + 1) (20)

and, with the positionl = nθ +m, we have

λ2 = l(l + 1) (21)

which is the expected result. Please note that the WKB series is convergent for|x| > 1,
thus form > 0.

We observe that theε-expansion is equivalent to the 1/U -expansion (this is clear from
the structure of equation (8)). In the limitU → ∞ it is easy to get the WKB expansion
to the first order, which givesλ2 = (l + 1

2)
2, i.e. the torus quantization of the angular

momentum (Langer 1937).

4. SWKB quantization of the angular momentum

To perform the SWKB of equations (4) or (6), it is necessary to know the ground-state
wavefunctionT0(θ) = sinm (θ) and its eigenvalueλ0 = m(m+ 1). Then we can define the
supersymmetric (SUSY) potential

8(θ) = −d ln(F0(θ))

dθ
= −(m+ 1

2) cot(θ) (22)

with

F0(θ) = T0(θ)
√

sin(θ). (23)

From8 the two SUSY partner potentials and Hamiltonians may be defined

H± = − d2

dθ2
+ V±(θ) (24)

V±(θ) = 82(θ)±8′(θ). (25)

It is possible to prove (see Junker 1996 and references therein for details) that: (i) the
ground-state energy ofH−, E0

−, vanishes; (ii) all other eigenvalues ofH−, E−, coincide
with that ofH+; (iii) the spectrum ofH− and that of (7) differ by a constant:

E− = λ2+ 1
4 − (λ2

0+ 1
4) (26)

whereλ0 = m(m+ 1) is the eigenvalue of the ground state of equation (4).
Now we apply the SWKB formalism toH− of equation (24). At the leading order one

gets ∫ b

a

√
E− −82(x) dx = nθπ (27)
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with a, b roots of

E− −82(x) = 0. (28)

This formula is also referred to as the CBC formula, from Comtetet al (1985). We observe
that on the left-hand side of the previous formulae82 appears instead of the full potential
V−.

From equations (22), (27) and (28) one easily finds√
E− + (m+ 1

2)
2− (m+ 1

2) = nθ (29)

with b = −a = arctan

√
(m+ 1

2 )

E−
. By inverting the previous formula we have

E− = (nθ +m+ 1
2)

2− (m+ 1
2)

2 (30)

and, by using equation (26) withλ0 = m(m+ 1), we obtain

λ2 = (nθ +m)(nθ +m+ 1) (31)

which yields the exact quantization, after the positionl = nθ +m.

5. Conclusions

The three-dimensional central potentials are fundamental in physics, and the semiclassical
treatment of them has implications in many fields: factorization properties of the one-
dimensional potentials (Infeld and Hull 1957), general properties of the semiclassical
quantization of the systems with more than one degree of freedom, both integrable or
not. Nevertheless, until the paper of Robnik and Salasnich (1997b), no detailed study
had been done on half of the problem, the WKB quantization of the angular part. This
paper completes that work because it gives a rigorous proof of the convergence of the
WKB series to the exact result. Moreover, in the last section, we have demonstrated that,
by using SUSY quantum mechanics, the eigenvalue problem of the angular momentum
operator can be solved exactly at the lowest order within the semiclassical approximation.
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