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Abstract. In this paper we prove a recent conjecture about the convergence of the WKB
series for the angular momentum operator. We demonstrate that the WKB algorithm for the
angular momentum gives the exact quantization formula if all orders are summed. Finally, we
discuss the supersymmetric semiclassical quantum mechanics (SWKB), which gives the correct
quantization of the angular momentum at the leading order.

1. Introduction

The semiclassical methods used to solve the&tihger problem are of extreme importance

in understanding the global behaviour of eigenfunctions and energy spectra, since they
allow us to obtain analytic expressions. The leading semiclassical approximation (torus
quantization) is just the first term of a certdirexpansion, which is called WKB (Maslov

and Fedoriuk 1981).

Recently it was observed (Prosen and Robnik 1993, Geaffll 1994, Robnik and
Salasnich 1997a—in the following this work will be referred to as ) that the torus
guantization generally fails to predict the individual energy levels (and the eigenstates)
within a vanishing fraction of the mean-energy level spacing. This conclusion is believed
to be correct for general systems, including the chaotic ones. Therefore, a systematic study
of the accuracy of semiclassical approximation is very important, especially in the context
of quantum chaos (Casati and Chirikov 1995, Gutzwiller 1990). Since this is a difficult task,
it has been attempted for simple systems, where in a few cases even exact solutions may
be found (Dunham 1932, Bendet al 1977, Voros 1983, Robnik and Salasnich 1997a).

Robnik and Salasnich (1997b) (this work will be referred to as Il) dealt with the WKB
expansion for the Kepler problem: it was proved that an exact result is obtained once all
terms are summed. In particular, the torus quantization (the leading WKB term) of the
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full problem is exact, even if the individual torus quantization of the angular momentum
and of the radial Kepler problem separately are not, because the quantum corrections (i.e.
terms higher than the torus quantization) compensate mutually term by term. In the paper
Il Robnik and Salasnich conjectured about the higher terms of the WKB expansion. This
conjecture is perfectly reasonable but not rigorously proved. In this work our aim is to
prove that the same result of Il can be reached rigorously by means of a slightly modified
procedure.

In the framework of the supersymmetric semiclassical quantization (SWKB), Comtet
et al (1985) obtained at the leading order the exact quantization of the radial part of the
Kepler problem by using the correct valii = h%(I + 1). In the last section we complete
the result of Comteet al (1985). In fact, we also show that the exact quantization of the
angular momentum is obtained at the first order of the SWKB expansion.

2. Eigenvalue problem for the angular momentum

The eigenvalue equation of the angular momentum operator (Landau and Lifshitz 1977) is

L2Y (0, ¢) = AZR2Y (0, §) (1)
with
o P2 Y ) 1 92
2 _ p2 ¢ 2 9 ) 52 -
Lo=Fi+ sirk(0) h (892 + COK@)&@) h sirf(9) 32’ @
After the substitution
Y(0,¢) =T ()" ®3)
we obtain
2
" / 2 m
— =0. 4
T"(6) + cot(®)T'(9) + (x Sin2(9)> T@®)=0 (4)

We shall consider the azimuthal quantum numbeas fixed. As is well known, equation (4)

is exactly solvable. Its eigenvalues and eigenfunctions can be found in any text on quantum
mechanics (see, e.g. Landau and Lifshitz 1977): the formei%are [(I + 1), [ > m; the

latter are the associated Legendre polynomials.

The WKB expansion for equation (4) has been studied in Il; it was shown that higher-
order terms quickly increase in complexity. The method of solution is to find an analytical
recursive expression for all the higher-order terms, to sum the entire infinite series, and
show that it is convergent to the exact result. Instead of the original funétiare shall
use the associated functidft

F(9)

TO = Jeno

®)

from which we obtain

e[ (-]
F(8)+[<A +3 +Sin2(9) 4 M| F@ =o. (6)

This equation has the standard form of the one-dimensionalo8iciger equation with
h = 2M = 1. Its eigenvalues aré.? + ;). We make the substitution of variable:
x =0+ /2, and the position§/ = m? — }, E = A% + ;. Then equation (6) becomes

—F'"(x)+ F(x) = EF(x). @)

U
co(x)
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This is the main result of our paper, because the problem of the WKB quantization of
equation (7) has already been dealt with in I. As we shall show, from | we can prove that:
(i) equation (7) can be solved exactly; (ii) a semiclassical expansion of (7) may be carried
on to all orders (i.e. all terms may be exactly and analytically computed and summed); (iii)
the exact and the semiclassical eigenvalues are the same.

3. WKB series for the angular momentum

We observe that in equation (Z)does not appear, therefore an expansion in powers of this
parameter is not possible. To override this difficulty a small paraneetgiintroduced:

U
cog(x)
This parametek, which will be set to 1 at the end of the calculation, has formally the

same role of: as ordering parameter. It has already been used in Il to deal with the WKB
expansion of (4). The formal WKB expansion férreads:

—€2F"(x) + F(x) = EF(x). (8)

i o0

F(x) = - (X)€" 9

(x) exp(E;a (x)e ) ©)

and we obtain a recursion relation for the phases:

/ 2 __ _ U
(op(x))"=E co2(x) (10)
Zo,é(x)a,ﬁfk(x) +o0,/ ,(x)=0 n>0. (11)
k=0

The quantization condition is obtained by requiring that the wavefunction be single valued:

%da = gygdak = 27ng (12)

whereny is an integer number. All odd terms higher than the first vanish when integrated
along the closed contour since they are exact differentials (Beatdsr1977)

de'Q/H_]_ =0 k> 0. (13)
It may be proved by induction (see I) that the solution of (10), (11) is
0, (x) = (09)* =% P, (cosx)) si' ™ (x) (14)
with f(n) = 0 for n even, f(n) = 1 for n odd,
g(n)
P,(cogx)) = Y Cyy 0S¥ (x) (15)

=0
with g(n) = (3n — 2)/2 for n even,g(n) = (3n — 3)/2 for n odd, Cop =1, C10 = U/2,
Coo = (—1)"(U/2)2"(,’%) and Cy.10 = 0, kK > 0. It is not necessary to know the value

of the other coefficients since all the terms proportionalCtg, / > O disappear after
integration. The integral (12) becomes (see | for more details)

fdazygdoﬁ?{daﬁg;?gdm (16)
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1 2
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1 X1/t 2
=2n(ﬁ—2—22(i>7’2“):27m9 (18)
=0 («/4U)
but Y 2, (,’%)xl—z" = /14 x2 for |x| > 1, therefore equation (18) reads
VE-3V144v2 -3 = a2+ 1 1Vam2 L=, (19)
Now, because& = 1% + ; andU = m? — }, we obtain
M= (m+ng+3)°— % =(m+ng)m+ny+1) (20)
and, with the positiord = ng + m, we have
A =11+1) (21)

which is the expected result. Please note that the WKB series is convergént forl,
thus form > O.

We observe that the-expansion is equivalent to thg I -expansion (this is clear from
the structure of equation (8)). In the limif — oo it is easy to get the WKB expansion
to the first order, which gives? = (I + %)2, i.e. the torus quantization of the angular
momentum (Langer 1937).

4. SWKB quantization of the angular momentum

To perform the SWKB of equations (4) or (6), it is necessary to know the ground-state
wavefunctionTy(9) = sin™ (9) and its eigenvalugo = m(m + 1). Then we can define the
supersymmetric (SUSY) potential

dIn(Fo(6
DO) = —% = —(m + 1) cot6) (22)
with
Fo(0) = To(0)/sin(0). (23)
From ® the two SUSY partner potentials and Hamiltonians may be defined
2
Hi = —@ + Vi(g) (24)
Vi(0) = ®%(0) + D'(0). (25)

It is possible to prove (see Junker 1996 and references therein for details) that: (i) the

ground-state energy ofi_, E°, vanishes; (ii) all other eigenvalues & _, E_, coincide

with that of A, ; (iii) the spectrum ofH_ and that of (7) differ by a constant:
E_=)+;-05+3 (26)

whereio = m(m + 1) is the eigenvalue of the ground state of equation (4).
Now we apply the SWKB formalism té/_ of equation (24). At the leading order one
gets

b
/ VE_ —®2(x)dx = nym (27)
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with a, b roots of
E_—d%(x)=0. (28)

This formula is also referred to as the CBC formula, from Coratetl (1985). We observe
that on the left-hand side of the previous formutb® appears instead of the full potential
V_.

From equations (22), (27) and (28) one easily finds

VE-+m+3H2—m+1)=n (29)

1
with b = —a = arctan,/ (m;). By inverting the previous formula we have

E_=(ng+m+ 22— (m+12)? (30)
and, by using equation (26) witty = m(m + 1), we obtain
A= (ng+m)ng +m+1) (32)

which yields the exact quantization, after the positica ng + m.

5. Conclusions

The three-dimensional central potentials are fundamental in physics, and the semiclassical
treatment of them has implications in many fields: factorization properties of the one-
dimensional potentials (Infeld and Hull 1957), general properties of the semiclassical
guantization of the systems with more than one degree of freedom, both integrable or
not. Nevertheless, until the paper of Robnik and Salasnich (1997b), no detailed study
had been done on half of the problem, the WKB quantization of the angular part. This
paper completes that work because it gives a rigorous proof of the convergence of the
WKB series to the exact result. Moreover, in the last section, we have demonstrated that,
by using SUSY quantum mechanics, the eigenvalue problem of the angular momentum
operator can be solved exactly at the lowest order within the semiclassical approximation.
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